Performance Control for Manufacturing Sustainability: a Cellular Neural Network-based Approach
نویسندگان
چکیده
The recent trends in optimisation of sustainability of production processes requires, amongst all the activities, a continuous detection and correction of process behaviours, monitoring those parameters critical to performance. Detection of special causes of variations is a basic task in manufacturing, that has to be performed continuously to maintain any process stable as well as predictable. In this paper, a contribution to automate performance control is presented, based on synthesizing Cellular Neural Networks as associative memories for pro-actively recognizing unnatural behaviours. As an example, a test case is developed by considering abnormal cyclic behaviours given by sinusoidal signals. For this purpose, a CNN is synthesized for an associative memory, to recognize these unnatural situations. A robustness analysis of the synthesized network is then developed in the presence of unnatural behaviours in the form of input noises. The behaviour of the designed circuit is illustrated in detail. Key-Words: Statistical Process Control, Cellular Neural Networks, Recognition Process, Associative Memories, Sustainable manufacturing.
منابع مشابه
A hybrid approach to supplier performance evaluation using artificial neural network: a case study in automobile industry
For many years, purchasing and supplier performance evaluation have been discussed in both academic and industrial circles to improve buyer-supplier relationship. In this study, a novel model is presented to evaluate supplier performance according to different purchasing classes. In the proposed method, clustering analysis is applied to develop purchasing portfolio model using available data in...
متن کاملDevelopment of an in-cylinder processes model of a CVVT gasoline engine using artificial neural network
Today, employing model based design approach in powertrain development is being paid more attention. Precise, meanwhile fast to run models are required for applying model based techniques in powertrain control design and engine calibration. In this paper, an in-cylinder process model of a CVVT gasoline engine is developed to be employed in extended mean valve control oriented model and also mod...
متن کاملAn artificial Neural Network approach to monitor and diagnose multi-attribute quality control processes
One of the existing problems of multi-attribute process monitoring is the occurrence of high number of false alarms (Type I error). Another problem is an increase in the probability of not detecting defects when the process is monitored by a set of independent uni-attribute control charts. In this paper, we address both of these problems and consider monitoring correlated multi-attributes proce...
متن کاملThe Extraction of Influencing Indicators for Scoring of Insurance Companies Branches Based on GMDH Neural Network
O ne of the key topics and the most important tools to determine the strengths, weaknesses, opportunities and threats of each organization and company is the evaluation the performance of organizational activities that rating and ranking follows the internal and external goals. In this regard insurance companies similarly are looking for evaluation of their branches through scoring, ...
متن کاملOnline Monitoring and Fault Diagnosis of Multivariate-attribute Process Mean Using Neural Networks and Discriminant Analysis Technique
In some statistical process control applications, the process data are not Normally distributed and characterized by the combination of both variable and attributes quality characteristics. Despite different methods which are proposed separately for monitoring multivariate and multi-attribute processes, only few methods are available in the literature for monitoring multivariate-attribute proce...
متن کامل